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The Protein Folding Problem

• Given a known “primary” sequence of residues, predict its

native, or folded, state in 3-dimensional space

Assumptions
1. The native state of the molecular structure corresponds to the

global (or near global) minimum of a potential energy

function.

2. Conformations are defined by internal molecular coordinates:

backbone torsion angles (ϕ/ψ).

3. The chain of monomers consist of two types:

H (hydrophobic) andP (polar/hydrophilic).

4. H-H monomer pairs areattractive.

5. All monomer pairs exhibit steric repulsive forces.
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The Polypeptide Chain Model
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Modeling the Potential Energy

• Recent success by independent research groups (Dill at UCSF,

Rose at JHU) has shown that the dominant forces in folding

are:

1.Steric repulsion (aka excluded volume)

2.Hydrophobic-Hydrophobic attraction

3.Hydrogen bond formation

4.Specific torsion angle preference

• Such an energy model becomes:

F(φ) = Eex + Ehp + Eh + Eϕψ
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The Sun/Thomas/Dill Potential Energy
Function

• The model potential function is

F(φ) = Eex + Ehp + Eh+ Eϕψ

where:

1.Eex =

2.Ehp =

3.Eh =

4.Eϕψ represents the preference for specificϕ/ψ pairs, as

shown via a Ramachandran map.

C1

1.0 exp
dij deff–

dw
----------------------

 
 
 

+

---------------------------------------------------
ij
∑

εij–( )
C2

1.0 exp
dij d0–

dt
------------------

 
 
 

+

-----------------------------------------------
i j– 2>
∑

C3q
1
q2

4πε0Ddij
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i j– 3>
∑
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Eex + Ehp Energy Terms for H-H Pairs

dij

Eex + Ehp
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The Ramachandran Map for All Residues
Except GLY and PRO

ϕ

ψ
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Constructing Eϕψ to Approximate the
Ramachandran Data

• Require thatEϕψ satisfy

Eϕψ =

• Represent each “ellipsoidal” region Ri by a quadratic function

qi(ϕ,ψ) which satisfies the conditions:

qi(ϕ,ψ) < 0 in the interior of Ri

qi(ϕ,ψ) = 0 on the boundary of Ri

qi(ϕ,ψ) > 0 in the exterior of Ri

• Define the sigmoidal penalty termEϕψ as

Eϕψ =

0 if ϕ ψ,( ) Ri∈ for somei

β otherwise



β

1.0 e

i 1=

p

∑ xp γ iq–
i

ϕ ψ,( )( )+

------------------------------------------------------------------
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The Sigmoidal Energy TermEϕψ
with β = 1 and γ = 5

• β = 1 andγ = 25 work well for computation.

Eϕψ

q(ϕ,ψ)
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The Sigmoidal Approximation to the
Ramachandran Map for All Residues Except

GLY and PRO

• Used to implementEϕψ for all residues except GLY and PRO.

ϕ

ψ
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Molecular Conformation with Additional
Distance Geometry Constraints

• Information on distances (dij) between specified pairs of atoms

in a molecule may be known (rij) :

dij  = rij , for (i,j) ∈ S.

• This information can be used to improve the molecular

conformation calculation.

• Add distance terms to the energy functionF(φ):

and compute the global minimum ofFd(φ).

Fd φ( ) F φ( ) Kd r ij
2

dij
2

–( )
2

i j, S∈
∑+=
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Convex Global Underestimator

• Attempt to use a “global underestimating function” to localize

the search in the region of the global minimum.

• Fits all known local minima with a function which

underestimates all points, but differs from them by the

smallest possible amount (minimizes the L1 norm).

Convex Global Underestimator in One
Dimension

F

ϕ
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Convex Global Underestimator (cont)

• The bounds of the hypercube Hφ are also used to limit the

“search region” around the predicted global minimum.

Convex Global Underestimator in One
Dimension

F

ϕ
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Convex Global Underestimator (cont)

• The new more “localized” search region is explored and

another convex global underestimator is computed with

corresponding predicted global minimum.

Convex Global Underestimator in One
Dimension

F

ϕ
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Defining the Underestimating Function

• Assume all bond lengths (l) and bond angles (θ) are fixed.

• Given k local minimizers (conformations)φ(j), for j=1,...,k,

determine the coefficients of the functionΨ(φ) so that:

for j=1,...,k, and where  is minimized.

δ j F φ j( )( ) Ψ φ j( )( ) 0≥–=

δ jj 1=
k∑
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Defining the Underestimating Function
(cont.)

• The underestimating function

consists of linear term,ci, and quadratic term,di.

• Convexity is guaranteed by requiring thatdi ≥ 0 for i=1,...,n.

• Note that the minimum of this function is easily computed:

φi = -ci / di for i=1,...,n.

Ψ φ( ) c0 ciφi
1
2
---diφi

2+ 
 

i 1=

n

∑+=
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Algorithm

1. Computek ≥ 2n+1 distinct local minimaφ(j), for j=1,...,k, of

the functionF(φ).

2. Compute the convex quadratic underestimator function

by solving the linear program

3. Compute the predicted global minimum pointφmin given by

(φmin)i = -ci/di, i=1,...,n, with corresponding function value

Ψmin given by .

Ψ φ( ) c0 ciφi
1
2
---diφi

2+ 
 

i 1=

n

∑+=

minimize ƒTy1 ƒTek–
y1 y2 y3, ,

subject to Φ I ′n
T

I ′n
T

–

Ω D D–

y1

y2

y3

Φek

Ωek

= , y1 y2 y3, , 0≥

Ψmin c0

ci
2

2di( )
-------------

i 1=

n∑–=
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Algorithm
(cont.)

4. If φmin = φ∗, whereφ∗ = argmin{F(φ(j)), j=1,2,... } is the best

local minimum found so far, then stop and reportφ∗ as the

approximate global minimum conformation.

5. Reduce the volume of the hyperrectangle Hφ over which the

new configurations will be produced, and remove all

columns from Φ and Ω which correspond to the

conformations which are excluded from Hφ.

6. Useφmin as an initial starting point around which additional

local minimaφ(j) of F(φ) (restricted to Hφ) are generated.

Add these new local minimum conformations as columns to

the matricesΦ andΩ.

7. Return to step 2.
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Convergence Properties

• If the CGU underestimates theglobal minimum ofF(φ) at

every iteration, then finite convergence to the global minimum

can be guaranteed using a branch and bound method.

• Even if it fails to underestimate at some iterations, itmay still

give finite convergence to the global minimum.
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Computation of Local Minima

• QN unconstrained minimization using BFGS updates.

• Major fraction (99%) of total computation time is used for

finding local minima

• Local minimizations are easily performed in parallel -->

“embarrassingly parallel”.
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Computational Issues

• The algorithm is implemented in C using the MPI message

passing system.

• All local minimizations are performed in parallel using all

available processors.

• All other steps are performed sequentially on a single

designated “master” CPU.

• Uses a “master/slave” SPMD paradigm.
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Computational Platforms

• Computational tests have been conducted on:

1.Cray T3D at SDSC using as many as 32 processors.

2.Network of 12 Sun SparcStations and 7 SGI Indys at

USNA.

3.Dec “Alpha Farm” at SDSC using 8 processors.

4.Intel Paragon at SDSC using as many as 64 processors.



P R O T E I N  S T R U C T U R E  P R E D I C T I O N  B Y  G L O B A L  O P T I M I Z A T I O N

A.T. Phillips
J.B. Rosen

K.A. Dill

24 of 39

Computational Complexity

• < O(n4) increases in time (average case)

- Number of local minima required for construction of
underestimator: O(n).

- Number of “major” iterations: O(1) (always < 10).

- Time per local minimization: < O(n3).

• O(2n) increases in time (worst case)

Time as a function of n for 16 PEs on the Cray T3D
T(n) ≈ (0.01) n4

n 10 20 30 40 50 100

T(n)

minutes

15 74 235 595 1293

(21 hrs)

17505

(12 days)
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A 23-mer Folded Structure (BBA1 Motif)

Computed Energy = -160.31 Kcal/mol

• Compare this structure to:

M.D. Struthers, R.P. Cheng, and B. Imperiali,Design of a
Monomeric 23-Residue Polypeptide with Defined Tertiary
Structure, Science271:342-345 (19 January 1996)
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A 36-mer Folded Structure (1PPT)

Computed Energy = -309.94 Kcal/mol

Native structure CGU computed structure
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Computed Energies of 8 Small Proteins

a. Time reported is “wall clock time” using 16 nodes on the Cray T3D.

b. Time reported is “wall clock time “ using 32 nodes on the Cray T3D.

Compound Name Residues
CGU

Native Energy
Time for
Solutiona

met-enkephalin 5 -43.78 kcal/mol 1.2 minutes

bradykinin 9 -22.35 kcal/mol 6.5 minutes

oxytocin 9 -105.17 kcal/mol 3.3 minutes

BBA1 23 -160.31 kcal/mol 1.6 hours

mellitin 27 -262.69 kcal/mol 3.7 hours

zinc-finger motif 30 -153.06 kcal/mol 2.3 hours

avian pancreatic
polypeptide

36 -306.94 kcal/mol 7.7 hours

crambin 46 -325.35 kcal/mol 8.0 hoursb
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Probability of a Local Minimum
Conformation

• GivenN+1 local minima (including the global) with energies

Fj, j=0,...,N

whereF0 = FG is the global minimum energy.

• The probability of the ith conformation is:

wherek = 1.982 cal/mol, andT = temperature (degrees Kelvin)

pi
e

Fi FG–( ) kT( )⁄–

e
F j FG–( ) kT( )⁄–

j 0=
N∑

----------------------------------------------------------=
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Probability Distribution of Local Minima

Number of Local Minima in Probability Range Shown

compound
(residues)

.9 .8 .7 .6 .5 .4 .3 .2 .1 <.1 Total

met-enkepha-
lin (5)

1 1 78 80

bradykinin (9) 1 2 116 119

oxytocin (9) 1 1 99 101

BBA1 (23) 1 302 303

mellitin (27) 1 383 384

zinc-finger
motif (30)

1 320 321

avian pancre-
atic polypep-

tide (36)

1 609 610

crambin (46) 1 651 652
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Interpretation of CGU Coefficients

Final “Landscape” CGU Energy Function:

Holding all internal coordinates, exceptφj, fixed at(φ0)i gives:

The Boltzmann distribution gives the probability in terms of
the energy:

Therefore,(φG)j is the mean value ofφj, and  is its

variance.

Ψ φ( ) FG
1
2
--- di φi φG( )

i
–( )2

i 1=

n

∑+=

Ψ φ j( ) FG–
1
2
---d j φ j φG( )

j
–[ ]2

=

P φ j( ) e

dj

2kT
---------- φ j φG( ) j–[ ]2–

=

σ j
2

kT( ) d j⁄=
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Representation of the Energy Landscape

The difference between the CGU energy and the global
minimum energy is:

The “RMS weighted error”, the deviation of theϕi from their

global minimum values (ϕG)i, is:

Hence: .

Plotting F(φ)-FG vs ∆φ gives a representation of the energy

landscape.

Ψ φ( ) FG–
1
2
--- di φi φG( )

i
–[ ]2

i 1=

n

∑=

∆φ di φi φG( )
i

–[ ]2

i 1=

n

∑=

Ψ φ( ) FG–
1
2
--- ∆φ( )

2
=
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Energy Landscape (1PPT)

Distribution of Local Minima
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Effect of Sequence on Structure

• The primary sequence uniquely determines the folded

structure.

• Permutations of the primary sequence result in dramatically

different structures.

• Permutations of the sequence do not significantly affect the

computational efficiency of the CGU method.

Five Permutations of a 30-mer Sequence
(27% Hydrophobic)

Sequence Wall Time Passes Time/Pass
Min

Energy

Seq1 224 m 3 75 m -118.14

Seq2 323 m 6 81 m -127.26

Seq3 208 m 3 69 m -107.71

Seq4 139 m 9 70 m -90.64

Seq5 332 m 5 83 m -157.96

Avg 245 m 5.2 75 m -120.34
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Effect of Sequence on Structure (cont)

Ψ(φ) = -118.14 kcal/mol

Ψ(φ) = -107.71 kcal/mol

Ψ(φ) = -157.96 kcal/mol
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Relationship to Folding Dynamics

• The CGU can be represented as:

.

• Starting with any initial conformationφ(0), we assume that the

φi, as a function of timet, are determined by the steepest

descent path onΨ.

• This is given by the ODE system:

whereµ is a rate constant.

• Combining these two equations gives:

.

Ψ φ( ) FG–
1
2
--- di φi φG( )

i
–[ ]2

i 1=

n

∑=

td
dφ µ Ψ φ( )∇–= t 0≥ φ 0( ), , φ 0( )

=

td

dφi µdi φi φ0( )
i

–[ ]–= φi 0( ) φ 0( )( )i= i=1,...,n, ,
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Relationship to Folding Dynamics (cont)

• This has the obvious solution:

.

• Hence, ast increases, eachφi will approach(φG)i at a rate

determined byµdi.

• And the potential energy can then be expressed as:

.

• The CGU surfaceΨ(φ) is a smoothed approximation to the

“energy funnel” which determines the folding dynamics.

φi t( ) φG( )
i

– φ 0( )( )i φG( )
i

– e
µdi t–

= t 0≥ i=1,...,n, ,

Ψ φ t( )( )
1
2
--- di φ 0( )( )i φG( )

i
–

2
e

2µdi t–

i 1=

n

∑ FG+=
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Example Folding Dynamics (1PPT)

Potential Energy Plot
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Coordinate Translation

• The computed global solutionφG may not coincide with the

known native structureφN.

• A simple coordinate translation can be used to map the

computed global minimum structure to the known native

structure.

• Define∆φN = φG - φN and the translated energy function:

.

• Note:  so thatF(φ) has its global minimum atφN.

F φ( ) F φ ∆φN+( )=

F φN( ) F φG( )=



P R O T E I N  S T R U C T U R E  P R E D I C T I O N  B Y  G L O B A L  O P T I M I Z A T I O N

A.T. Phillips
J.B. Rosen

K.A. Dill

39 of 39

Coordinate Translation (cont)

• Also:

, for j=1,...,k.

• Thus,F(φ) will have a local minimum at each conformation

φ(j) - ∆φN, j=1,...,k (these are the translated local minima).

• The energyF(φ) is given by the original energyF at adifferent

conformationφ - ∆φN.

F φ j( ) ∆φN–( ) F φ j( )
( )=

F

φ

Α Β

F

φ + ∆φΝ


